Software Defined Networking

A quantum leap for Devops?
Networking is bottleneck in today‘s devops

- Agile software development and devops is increasing pressure on operations departments due to more rapid changes
- Server and storage teams are increasing speed and flexibility with virtualization
- Network and security teams are becoming the bottleneck

Networking needs to become more flexible
Classical networking

- Classical network devices are autonomous, loosely coupled
 - Each device must be configured separately

- Lots of appliances for Firewall, VPN, intrusion detection, load balancing, web proxy / filtering etc.
 - Complex setup due to different configuration methods
 - Configuration discrepancies may result in outages
What’s in the network box?

- „Intelligent“ part of the device
- Runs ARP, Spanning Tree, IGMP, OSPF etc.
- Based on industry-standard CPU
- Runs an operating system (often proprietary)

- Packet forwarding
- Contains specialized hardware
- Very little logic involved

Management plane

Forwarding plane
Software defined networking: OpenFlow

- The management plane is centralized and called „controller“
- It decides about forwarding decisions and paths for the whole network
- OpenFlow works on layers 2-4 of the OSI model
OpenFlow Example

1. Router/Switch
2. Ask for forwarding decision
3. Install forwarding rule in flow table
4. Router/Switch
5. OpenFlow Controller
6. Router/Switch

<table>
<thead>
<tr>
<th>Switch port</th>
<th>MAC src</th>
<th>MAC dst</th>
<th>VLAN ID</th>
<th>MPLS label</th>
<th>IP src</th>
<th>IP dst</th>
<th>IP TOS</th>
<th>TCP sport</th>
<th>TCP dport</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>AABBCC</td>
<td>DDEEFF</td>
<td></td>
<td></td>
<td>1.2.3.4</td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td>Port 8</td>
</tr>
</tbody>
</table>
Only forwarding of packets?

- OpenFlow can be used for other things
 - Load balancing
 - Firewalling
 - Intrusion detection / prevention
 - Traffic accounting
 - Tracing / traffic mirroring

- We won‘t need a zoo of networking appliances any more!
OpenFlow Controllers have APIs

- Automate network configuration deployment
- Generation of forwarding rules based on configuration management (e.g. puppet)
- Easy to replicate production constraints in development and test
Benefits

- Automated, fast changes are possible throughout the whole network
- No discrepancies between network and host configuration
- Application development can develop communication rules
 - No surprises during deployment
Security benefits

- Responsibilities can be split by application, not by network device
- Security improvement due to accountability
 - Change control for all configuration changes
 - No undocumented, old firewall rules any more
 - Rule sets will match currently deployed applications
Networking tests in continuous delivery

- Virtualization hosts contain a software switch
- Hypervisor networking can be controlled via OpenFlow
- I have an enterprise class network in my laptop
 - and in my Jenkins server!
- A complete end-to-end view of the network can be set up in one virtualization host
 - No “We can’t afford a load balancer for testing” any more
Software development best practices can be applied

- Firewall and load balancing rules can be tested without actual deployment
 - Just simulate a switch, send queries to the OpenFlow controller and evaluate the answer
 - Unit tests for firewall rule sets, anyone?

- Packaging for network functions
 - Repositories, versions, dependency management

- Compliance to security policy can be checked similar to code quality metrics
 - Sonar for network security
Vendor support

- All networking vendors have some kind of SDN story
 - Cisco, Juniper, HP, Arista, Brocade support OpenFlow
 - OpenFlow products partially available, product support is being extended

- Every vendor wants to own the controller, nobody wants to deliver dumb iron

- Google is using pre-standard version of SDN for private connectivity between their datacenters („G-scale network“), Amazon uses a unknown / proprietary SDN implementation in EC2.
What’s still missing

- Good solutions for integration between classical network device configuration and OpenFlow networks
- Vendor interoperability is still in early stages
- Standards for northbound APIs (e.g. OpenDaylight project)
 - Necessary for higher abstractions
OpenFlow is not yet production-ready, but is likely to be the next major evolutionary step of networking.

Be prepared!