
Distributed Programming with

Cloud Haskell

Andres Löh

14 June 2013, Big Tech Day 6 — Copyright © 2013 Well-Typed LLP

.

.Well-Typed

.The Haskell Consultants

Overview

I Introduction
I Haskell
I Cloud Haskell
I Communication
I Going distributed
I Towards Map-Reduce

.

.Well-Typed

Introduction

What is Cloud Haskell?

I Framework (a number of related packages) for Haskell
I Message-passing distributed concurrency (Erlang, actors)
I All in libraries; no (specific) compiler support required

.

.Well-Typed

Features

I Global view on a distributed program
I Single program runs in potentially many places
I Processes and nodes are first class entities
I Communication via (typed) messages
I Functions can be sent
I Programmable serialization
I Easy to monitor processes (and recover from failure)
I (Draft of) formal semantics

.

.Well-Typed

Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

.

.Well-Typed

Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

Concurrency

I threads and locks (MVar s)
I aynchronous computations (Async s)
I software transactional memory
I . . .

.

.Well-Typed

Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

(Deterministic) Parallelism

I evaluation strategies
I dataflow-based task parallelism
I flat and nested data parallelism
I . . .

.

.Well-Typed

Multicore in Haskell

Many approaches

Different problems have different requirements / cost models.

Distributed Concurrency

I Cloud Haskell
I . . .

.

.Well-Typed

Freedom of choice

I Haskell is great for embedded domain-specific languages.
I GHC has a very capable run-time system.
I You can pick whatever suits the needs of your task.
I All the approaches can be combined!

Lesson

Rather than picking a language based on the model you want,
pick a library based on the problem you have.

.

.Well-Typed

Freedom of choice

I Haskell is great for embedded domain-specific languages.
I GHC has a very capable run-time system.
I You can pick whatever suits the needs of your task.
I All the approaches can be combined!

Lesson

Rather than picking a language based on the model you want,
pick a library based on the problem you have.

.

.Well-Typed

Cloud Haskell Example

server :: Process ()
server = forever $ do
()← expect
liftIO $ putStrLn "ping"

client :: ProcessId→ Process ()
client serverPid = forever $ do

send serverPid ()
liftIO $ threadDelay (1 ∗ 10ˆ6)

main :: IO ()
main = do

Right t← createTransport "127.0.0.1" "201306"
defaultTCPParameters

node ← newLocalNode t initRemoteTable
runProcess node $ do

serverPid← getSelfPid
spawnLocal $ client serverPid
server

.

.Well-Typed

Haskell

Pure Functions

dist :: Floating a⇒ a→ a→ a
dist x y = sqrt (x ∗ x + y ∗ y)

data Tree a = Leaf a | Node (Tree a) (Tree a)
size :: Tree a→ Int
size (Leaf n) = 1
size (Node l r) = size l + size r

search :: Eq a⇒ Tree a→ a→ Bool
search (Leaf n) x = n = = x
search (Node l r) x = search l x || search r x

.

.Well-Typed

Pure Functions

dist :: Floating a⇒ a→ a→ a
dist x y = sqrt (x ∗ x + y ∗ y)

data Tree a = Leaf a | Node (Tree a) (Tree a)
size :: Tree a→ Int
size (Leaf n) = 1
size (Node l r) = size l + size r

search :: Eq a⇒ Tree a→ a→ Bool
search (Leaf n) x = n = = x
search (Node l r) x = search l x || search r x

.

.Well-Typed

Pure Functions

dist :: Floating a⇒ a→ a→ a
dist x y = sqrt (x ∗ x + y ∗ y)

data Tree a = Leaf a | Node (Tree a) (Tree a)
size :: Tree a→ Int
size (Leaf n) = 1
size (Node l r) = size l + size r

search :: Eq a⇒ Tree a→ a→ Bool
search (Leaf n) x = n = = x
search (Node l r) x = search l x || search r x

.

.Well-Typed

Type signatures

dist :: Floating a⇒ a→ a→ a
size :: Tree a→ Int
search :: Eq a⇒ Tree a→ a→ Bool

.

.Well-Typed

Function calls

dist :: Floating a⇒ a→ a→ a

dist x y
dist 2 3
dist (2 + x) (3 + x)

.

.Well-Typed

IO

conversation :: IO ()
conversation = do

putStrLn "Who are you?"
name← getLine
putStrLn $ "Hi "++ name ++ ". Where are you from?"
loc← getLine
putStrLn $

if loc = = "Munich"
then "Oh, I love Munich!"
else "Sorry, where is "++ loc ++ "?"

readNLines :: Int→ IO [String]
readNLines n = replicateM n getLine

.

.Well-Typed

IO

conversation :: IO ()
conversation = do

putStrLn "Who are you?"
name← getLine
putStrLn $ "Hi "++ name ++ ". Where are you from?"
loc← getLine
putStrLn $

if loc = = "Munich"
then "Oh, I love Munich!"
else "Sorry, where is "++ loc ++ "?"

readNLines :: Int→ IO [String]
readNLines n = replicateM n getLine

.

.Well-Typed

Monads

Maybe a -- possibly failing
State s a -- state-maintaining
Random a -- depending on a PRNG
Signal a -- time-changing
Par a -- annotated for parallelism
IO a -- arbitrary side effects
STM a -- logged transactions
Process a -- Cloud Haskell processes
. . .

“Semicolon” is overloaded

You can define your own “monads”. You can decide what the
semantics of sequencing in your application should be.

.

.Well-Typed

Monads

Maybe a -- possibly failing
State s a -- state-maintaining
Random a -- depending on a PRNG
Signal a -- time-changing
Par a -- annotated for parallelism
IO a -- arbitrary side effects
STM a -- logged transactions
Process a -- Cloud Haskell processes
. . .

“Semicolon” is overloaded

You can define your own “monads”. You can decide what the
semantics of sequencing in your application should be.

.

.Well-Typed

Concurrency

forkIO :: IO ()→ IO ThreadId

threadDelay :: Int→ IO ()

forever :: Monad m⇒ m a→ m b -- here: IO a→ IO b

printForever :: String→ IO ()
printForever msg = forever $ do

putStrLn msg
threadDelay (1 ∗ 10ˆ6)

main :: IO ()
main = do

forkIO $ printForever "child 1"
forkIO $ printForever "child 2"
printForever "parent"

.

.Well-Typed

Concurrency

forkIO :: IO ()→ IO ThreadId

threadDelay :: Int→ IO ()

forever :: Monad m⇒ m a→ m b -- here: IO a→ IO b

printForever :: String→ IO ()
printForever msg = forever $ do

putStrLn msg
threadDelay (1 ∗ 10ˆ6)

main :: IO ()
main = do

forkIO $ printForever "child 1"
forkIO $ printForever "child 2"
printForever "parent"

.

.Well-Typed

Concurrency

forkIO :: IO ()→ IO ThreadId

threadDelay :: Int→ IO ()

forever :: Monad m⇒ m a→ m b -- here: IO a→ IO b

printForever :: String→ IO ()
printForever msg = forever $ do

putStrLn msg
threadDelay (1 ∗ 10ˆ6)

main :: IO ()
main = do

forkIO $ printForever "child 1"
forkIO $ printForever "child 2"
printForever "parent"

.

.Well-Typed

Cloud Haskell

Cloud Haskell example revisited

server :: Process ()
server = forever $ do
()← expect
liftIO $ putStrLn "ping"

client :: ProcessId→ Process ()
client serverPid = forever $ do

send serverPid ()
liftIO $ threadDelay (1 ∗ 10ˆ6)

main :: IO ()
main = do

Right t← createTransport "127.0.0.1" "201306"
defaultTCPParameters

node ← newLocalNode t initRemoteTable
runProcess node $ do

serverPid← getSelfPid
spawnLocal $ client serverPid
server

.

.Well-Typed

Layered architecture

Over-simplified:

User application

Higher-level libraries

Distributed process core library

Backend (simplelocalnet, Azure, EC2, . . .)

Transport (TCP, in-memory, SSH, ZeroMQ, . . .)

System libraries

.

.Well-Typed

Nodes, Processes, Communication

I Backend responsible for nodes
I Processes and communication

are backend-agnostic

.

.Well-Typed

Nodes, Processes, Communication

I Backend responsible for nodes
I Processes and communication

are backend-agnostic

.

.Well-Typed

Spawning and running processes

spawnLocal :: Process ()→ Process ProcessId
spawn :: NodeId→ Closure (Process ())

→ Process ProcessId

For the main process:

runProcess :: LocalNode→ Process ()→ IO ()

.

.Well-Typed

Sending and receiving messages

Ad-hoc:

send :: Serializable a⇒ ProcessId→ a→ Process ()
expect :: Serializable a⇒ Process a
expectTimeout :: Serializable a⇒ Int→ Process (Maybe a)

Sending is asynchronous. Receiving blocks.

Typed channels:

newChan :: Serializable a⇒ Process (SendPort a,ReceivePort a)
sendChan :: Serializable a⇒ SendPort a→ a→ Process ()
receiveChan :: Serializable a⇒ ReceivePort a→ Process a
. . .

.

.Well-Typed

Sending and receiving messages

Ad-hoc:

send :: Serializable a⇒ ProcessId→ a→ Process ()
expect :: Serializable a⇒ Process a
expectTimeout :: Serializable a⇒ Int→ Process (Maybe a)

Sending is asynchronous. Receiving blocks.

Typed channels:

newChan :: Serializable a⇒ Process (SendPort a,ReceivePort a)
sendChan :: Serializable a⇒ SendPort a→ a→ Process ()
receiveChan :: Serializable a⇒ ReceivePort a→ Process a
. . .

.

.Well-Typed

Serializable

Serializable a = (Typeable a,Binary a)

Typeable a -- has a run-time type representation
Binary a -- has a binary representation

.

.Well-Typed

Serializable

Serializable a = (Typeable a,Binary a)

Typeable a -- has a run-time type representation
Binary a -- has a binary representation

.

.Well-Typed

Static and dynamic typing

Haskell’s typing discipline

Haskell is a statically typed language, but can be dynamically
typed locally, on demand.

typeOf :: Typeable a⇒ a→ TypeRep
toDyn :: Typeable a⇒ a→ Dynamic
fromDynamic :: Typeable a⇒ Dynamic→ Maybe a

GHC can “derive” an instance of Typeable for any datatype
automatically.

.

.Well-Typed

Static and dynamic typing

Haskell’s typing discipline

Haskell is a statically typed language, but can be dynamically
typed locally, on demand.

typeOf :: Typeable a⇒ a→ TypeRep
toDyn :: Typeable a⇒ a→ Dynamic
fromDynamic :: Typeable a⇒ Dynamic→ Maybe a

GHC can “derive” an instance of Typeable for any datatype
automatically.

.

.Well-Typed

Binary representation

encode :: Binary a⇒ a→ ByteString
decode :: Binary a⇒ ByteString→ a

I Haskell has no built-in serialization.
I Automatic generation of sane Binary instances for many

datatypes possible via datatype-generic or
meta-programming.

I Programmer has control – instances can deviate from
simply serializing the in-memory representation.

.

.Well-Typed

Communication

How to reply

Idea

Messages can include process ids and channel send ports.

.

.Well-Typed

How to reply

Idea

Messages can include process ids and channel send ports.

Old server:

server :: Process ()
server = forever $ do
()← expect
liftIO $ putStrLn "ping"

.

.Well-Typed

How to reply

Idea

Messages can include process ids and channel send ports.

New server:

server :: Process ()
server = forever $ do

clientPid← expect
liftIO $ putStrLn $ "ping "++ show clientPid
send clientPid ()

.

.Well-Typed

Adapting the client

Old client:

client :: ProcessId→ Process ()
client serverPid =

forever $ do
send serverPid ()
liftIO $ threadDelay (1 ∗ 10ˆ6)

.

.Well-Typed

Adapting the client

Old client:

client :: ProcessId→ Process ()
client serverPid =

forever $ do
send serverPid ()

liftIO $ threadDelay (1 ∗ 10ˆ6)

.

.Well-Typed

Adapting the client

New client:

client :: ProcessId→ Process ()
client serverPid = do

clientPid← getSelfPid
forever $ do

send serverPid clientPid
()← expect
liftIO $ putStrLn "pong"
liftIO $ threadDelay (1 ∗ 10ˆ6)

.

.Well-Typed

More about replying

I We can send ids of other processes.
I Forwarding, redirection, broadcasting.

For typed channels:

I We can serialize SendPort .
I But we cannot serialize ReceivePort .

.

.Well-Typed

More about replying

I We can send ids of other processes.
I Forwarding, redirection, broadcasting.

For typed channels:

I We can serialize SendPort .
I But we cannot serialize ReceivePort .

.

.Well-Typed

Conversations

Some rules about exchanging messages:

I only one mailbox per process;
I we can expect a particular type;

I we can receiveWait for specific messages;
I typed channels are separate;
I sane ordering of messages;
I messages may remain undelivered.

.

.Well-Typed

Going distributed

Distributed ping-pong

No changes to server and client are needed.

Old main :

main :: IO ()
main = do

Right t← createTransport "127.0.0.1" "201306"
defaultTCPParameters

node ← newLocalNode t initRemoteTable
runProcess node $ do

serverPid← getSelfPid
spawnLocal $ client serverPid
server

.

.Well-Typed

Distributed ping-pong

No changes to server and client are needed.

New main (using distributed-process-simplelocalnet):

main :: IO ()
main = do

args← getArgs
let rtbl = __remoteTable initRemoteTable
case args of
["master",port]→ do

backend← initializeBackend "127.0.0.1" port rtbl
startMaster backend master

["slave" ,port]→ do
backend← initializeBackend "127.0.0.1" port rtbl
startSlave backend

.

.Well-Typed

Automatic detection of slaves

startSlave :: Backend→ IO () -- does nothing
startMaster :: Backend→ ([NodeId]→ Process ())→ IO ()

Master gets node ids of all slaves.

.

.Well-Typed

Automatic detection of slaves

startSlave :: Backend→ IO () -- does nothing
startMaster :: Backend→ ([NodeId]→ Process ())→ IO ()

Master gets node ids of all slaves.

.

.Well-Typed

Spawning functions remotely

master :: [NodeId]→ Process ()
master slaves = do

serverPid← getSelfPid
forM_ slaves $
λnid→ spawn nid ($(mkClosure ′client) serverPid)

server

Spawns a function call on a remote node.

.

.Well-Typed

Spawning functions remotely

master :: [NodeId]→ Process ()
master slaves = do

serverPid← getSelfPid
forM_ slaves $
λnid→ spawn nid ($(mkClosure ′client) serverPid)

server

Spawns a function call on a remote node.

.

.Well-Typed

Serializing functions

I “Single program assumption”
I Top-level functions are easy
I (Partially) applied functions are turned into closures

I Currently based on a bit of meta-programming.
I In the future perhaps using a (small) compiler extension.

.

.Well-Typed

Serializing functions

I “Single program assumption”
I Top-level functions are easy
I (Partially) applied functions are turned into closures

I Currently based on a bit of meta-programming.
I In the future perhaps using a (small) compiler extension.

.

.Well-Typed

Towards Map-Reduce

Distributing actual work

master :: [Input]→ [NodeId]→ Process ()
master inputs workers = do

masterPid ← getSelfPid
workerPids← forM workers $
λnid→ spawn nid ($(mkClosure ′worker) masterPid)

forM_ (zip inputs (cycle workerPids)) $
λ(input,workerPid)→ send workerPid input

r← collectResults (length inputs)
liftIO $ print r

.

.Well-Typed

Distributing actual work

master :: [Input]→ [NodeId]→ Process ()
master inputs workers = do

masterPid ← getSelfPid
workerPids← forM workers $
λnid→ spawn nid ($(mkClosure ′worker) masterPid)

forM_ (zip inputs (cycle workerPids)) $
λ(input,workerPid)→ send workerPid input

r← collectResults (length inputs)
liftIO $ print r

.

.Well-Typed

Workers

. . .
workerPids← forM workers $
λnid→ spawn nid ($(mkClosure ′worker) masterPid)

. . .

worker :: ProcessId→ Process ()
worker serverPid = forever $ do

x← expect -- obtain function input
send serverPid (expensiveFunction x)

The expensiveFunction is “mapped” over all inputs.

.

.Well-Typed

Collecting results

. . .
r← collectResults (length inputs)
liftIO $ print r

. . .

collectResults :: Int→ Process Result
collectResults = go emptyResult

where
go :: Result→ Int→ Process Result
go !acc 0 = return acc
go !acc n = do

r← expect -- obtain one result
go (combineResults acc r) (n − 1)

In go we “reduce” the results.
.

.Well-Typed

Abstraction and variation

I Abstracting from expensiveFunction , emptyResult ,

combineResults (and inputs) yields a simple
map-reduce function.

I Can easily use other ways to distribute work, for example
work-stealing rather than work-pushing.

I Can use a hierarchy of distribution and reduction
processes.

.

.Well-Typed

Conclusions

Aspects we hardly talked about:

I User-defined message types
I Matching of messages
I Embrace failure! (Linking and monitoring)
I Combination with other multicore frameworks

Remember:

I Cloud Haskell is a library (easy to change, extend, adapt)
I Cloud Haskell is ongoing work
I All of Haskell plus distributed programming
I Watch for exciting new backends and higher-level libraries

.

.Well-Typed

Conclusions

Aspects we hardly talked about:

I User-defined message types
I Matching of messages
I Embrace failure! (Linking and monitoring)
I Combination with other multicore frameworks

Remember:

I Cloud Haskell is a library (easy to change, extend, adapt)
I Cloud Haskell is ongoing work
I All of Haskell plus distributed programming
I Watch for exciting new backends and higher-level libraries

.

.Well-Typed

Want to try it?

http://haskell-distributed.github.io/

Mini-tutorial blog series by Duncan Coutts and Edsko de Vries:

http://www.well-typed.com/blog/70

.

.Well-Typed

http://haskell-distributed.github.io/
http://www.well-typed.com/blog/70

