TNG AI Insight #2: Model Context Protocol

August 14th, 2025

Today, we introduce the ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—–๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—ฃ๐—ฟ๐—ผ๐˜๐—ผ๐—ฐ๐—ผ๐—น (๐— ๐—–๐—ฃ) - an open protocol that standardizes how applications, services, and #AI models exchange structured information in a reliable, predictable way. #MCP is designed to make tools, APIs, and models work together without requiring custom integrations for each pairing.

Rather than being a broad set of guidelines, MCP ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ฒ๐˜€ ๐˜€๐—ฝ๐—ฒ๐—ฐ๐—ถ๐—ณ๐—ถ๐—ฐ ๐—ฟ๐—ฒ๐—พ๐˜‚๐—ฒ๐˜€๐˜/๐—ฟ๐—ฒ๐˜€๐—ฝ๐—ผ๐—ป๐˜€๐—ฒ ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ฐ๐—ฎ๐—ฝ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐—ถ๐—ฒ๐˜€ that any compliant client or server can use. These can be as simple as a single function that runs code, or as complex as multi-step interactions between distributed components.

๐—ž๐—ฒ๐˜† ๐—ฎ๐˜€๐—ฝ๐—ฒ๐—ฐ๐˜๐˜€ ๐—ผ๐—ณ ๐— ๐—–๐—ฃ:
๐Ÿ”น Standardized schema and format for data exchange
๐Ÿ”น Dynamic discovery and use of capabilities between clients and servers
๐Ÿ”น Consistent tool integration without hard-coded APIs
๐Ÿ”น Scalability from single-purpose tools to large, distributed systems

MCP is particularly useful when pairing Large Language Models (LLMs) with external services via APIs. An ๐— ๐—–๐—ฃ-๐—Ÿ๐—Ÿ๐—  ๐˜€๐—ฒ๐˜๐˜‚๐—ฝ consists of four main components:
๐Ÿ”น Host application: Execution environment for the #LLM
๐Ÿ”น MCP client: Bridges the LLM to external tools
๐Ÿ”น MCP server: Exposes tool capabilities in the MCP format
๐Ÿ”น LLM: The reasoning engine that issues requests to available capabilities

๐—›๐—ผ๐˜„ ๐—ฑ๐—ผ๐—ฒ๐˜€ ๐—ง๐—ก๐—š ๐˜‚๐˜€๐—ฒ ๐— ๐—–๐—ฃ?
At TNG, weโ€™ve been working with MCP for months to build tailored integrations. For example, our Slack MCP server allows the LLM to read and send messages in authorized channels.

๐—•๐—ฒ๐—ป๐—ฒ๐—ณ๐—ถ๐˜๐˜€ ๐—ผ๐—ณ ๐— ๐—–๐—ฃ:
By adopting MCP, developers gain:
๐Ÿ”น Seamless interoperability across tools and models
๐Ÿ”น Reduced integration complexity and maintenance overhead
๐Ÿ”น Scalable, modular architecture
๐Ÿ”น Reusable components across different LLM and tool configurations

For more in-depth insights into MCP visit this website.